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1 Introduction

The following notes are designed to get the interested reader
up and running – developing his or her own spatial or space-
time models – as quickly as possible. For better or worse, this
means many details regarding alternative modeling, model
checking, computation are omitted for the sake of keeping
this primer streamlined. The goal of this primer is to convey
an overall sense of what is involved in developing space-time
models. Far more detailed accounts of spatial and space-
time modeling can be found in standard texts such as Cressie
(1991), Stein (1999), Wackernagel (1995), Chilés and Delfiner
(1999), or Banerjee et al.(2004).

In this primer, the emphasis is on Gaussian spatial and
space-time models. These models are quite flexible and can
be adapted to wide variety of applications, even where the
observed data are markedly non-Gaussian as will be shown
in Section 4. Due to my own bias and experience, purely spa-
tial models are first developed in Sections 2 through 4. These
models are then extended to the space-time domain in Sec-
tions 5 and 6. Throughout the book, the computation for the
actual applications is carried out using Markov chain Monte
Carlo (MCMC), which was first implemented on a spatial
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system in 1953. I’ll do my best to show the natural links be-
tween spatial systems and MCMC. I also caution the reader,
that for the sake of reducing the number of details that must
be covered, MCMC is essentially the only method used in
this primer. Though this technique is widely applicable, in
many situations, there may be more efficient computational
approaches that I neglect here.

2 Gaussian computation

The spatial models laid out in this primer make heavy use
of Gaussian systems. This section goes over some basics for
simulation and conditioning with multivariate normal mod-
els.

0 1 2 3 4 5 6 7
−2

−1

0

1

2

s

z(
s)

Figure 1: A realization from a 1-d Gaussian process (GP)
with covariance given by Σij = exp{−||si − sj ||

2}.

Figure 1 shows a realization z(s) of a Gaussian process
model on s1, . . . , sn
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where Σij = exp{−||si − sj ||
2} and ||si − sj || denotes the dis-

tance between locations si and sj . Here z has a multivariate
normal probability density function given by

π(z) = (2π)−
n
2 |Σ|−

1

2 exp{− 1

2
zT Σ−1z}.
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If the spatial locations {s1, . . . , sn} are taken to be {0, 1, . . . , 7}
the realizations correspond to the circles plotted in Figure 1.
Alternatively, the spatial locations {s1, . . . , sn} could define
a very dense grid of points between 0 and 7. In this case, the
realization corresponds to the line in Figure 1. Additional
realizations of z(s) are shown in Figure 2.
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Figure 2: Several independent realizations from a 1-d Gaus-
sian process with covariance given by Σij = exp{−||si−sj ||

2}.

The covariance matrix Σ for the process z(s) is built ac-
cording to the rule Σij = exp{−||si − sj ||

2}. In general,
not just any rule will do – a covariance rule needs to give
a valid covariance matrix (symmetric and positive definite)
for any set of points within the spatial domain. For a cata-
log of possible covariance rules, consult previously mentioned
texts on Kriging and spatial modeling. Later in this sec-
tion, the covariance rules Σij = exp{−||si − sj ||

2} and Σij =
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exp{−||si − sj ||
1} are compared. Generally, the smoothness

and the strength of dependence in the realizations z(s) are in-
fluenced by the choice of covariance rule. Note that practical
covariance rules will need to acount for scaling in distance as
well as variance. Thus a more general covariance rule might
look like

Σij(σ
2
z , r) = σ2

z exp
{

−(||si − sj ||/r)2
}

where σ2
z controls the marginal varance of z(s) and r scales

distance. However, since the focus of this chapter through
Section 3.2 is on z(s), the scaling parameters are left at 1 for
now.

2.1 Generating multivariate normal realizations

Most any computer package will generate independent, uni-
variate normal draws:

u ∼ N(0, In).

A standard property of normals –

if u ∼ N(µ,Σ), then z = Ku ∼ N(Kµ, KΣKT )

– can be used to construct correlated realizations z from iid
draws held in vector u. The following recipe can be used to
generate z ∼ N(0, Σ):

1. compute square root matrix L such that LLT = Σ;

2. generate u ∼ N(0, In);

3. set z = Lu ∼ N(0, LInLT = Σ).

This simple recipe gives some insight about how one might
represent the process z in terms of basis vectors:
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• the columns of L are effectively basis vectors for repre-
senting realizations:

z =
m
∑

i=1

ℓiui

where ℓi is the ith column of L;

• the choice of L is not unique – alternative choices for L
lead to different basis representations for z;

• L need not be square. If L is a n×m matrix, then the
columns of L give a lower-dimensional basis representa-
tion for z if m < n, and an overspecified representation
if m > n.

To get an idea of basis representations various square root
factorizations produce, we consider a simple 1-d GP z(s) at
20 spatial locations {s1, . . . , s20} which are equally spaced
between 0 and 10 in ascending order. The covariance rule is
given by Σij = exp{−||(si − sj)/5||2}. Hence the 20-vector
z = (z(s1), . . . , z(s20))

T has a normal distribution with mean
0 and covariance Σ.

The most common method for constructing a square root
L of a covariance matrix Σ is with the standard Cholesky fac-
torization (Press et al., 2002, Ch 2.9). The resulting columns
of the square root matrix L are shown in Figure 3. Because
the standard Cholesky factorization builds the basis vectors
sequentially, without regard to the spatial locations s1, . . . , s20

implicit in the vector z, the resulting basis representation is
rather inefficient since each of the basis vectors have elements
of appreciable size.

This is due to the ordering of the components of z that
the resulting Cholesky decomposition of Σ is relatively ineffi-
cient. If one reorders the vector z so that its most correlated
elements are not always adjacent, the resulting basis vectors
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Figure 3: Basis vectors resulting from the Cholesky factor-
ization of the covariance matrix obtained by applying the
covariance rule Σij = exp{−||(si − sj)/5||2} to 20 equally
spaced points between 0 and 10.

given by the Cholesky decomposition will look quite differ-
ent. A particular efficient ordering is obtained by using a
Cholesky factorization with pivoting (Dongarra et al., 1978).
The resulting basis vectors are shown in Figure 4. In this
example, nearly all of the variation in z is explained by the
first 5 basis vectors.

A third (of many more) alternatives can be obtained by
taking the singular value decomposition (SVD) of Σ for which
Σ = UDUT where U is an orthonormal matrix and D is di-
agonal with non-negative elements. The square root matrix
can then be given by L = UD

1

2 . The columns of the result-
ing matrix L are shown in Figure 5. As with the Cholesky
factorization with pivoting, this approach gives an efficient
basis representation of z. Sections 4 and 5 consider modeling
approaches that rely on efficient basis representations of z.
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Figure 4: Basis vectors resulting from the Cholesky factor-
ization with pivoting of the covariance matrix obtained by
applying the covariance rule Σij = exp{−||(si − sj)/5||2} to
20 equally spaced points between 0 and 10.
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Figure 5: Basis vectors resulting from the SVD factorization
with pivoting of the covariance matrix obtained by applying
the covariance rule Σij = exp{−||(si − sj)/5||2} to 20 equally
spaced points between 0 and 10.
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2.2 Conditional distributions

In nearly any spatial application, some aspect of the problem
involves inferring about z(s), over a spatial domain S. To be
concrete, suppose z(s), s ∈ S is a mean 0 GP with covariance
rule Σij = exp{−||(si − sj)||

2}, and S denotes m = 8 spatial
locations {s1, . . . , sm} = {0, 1, . . . , 7}. Now we observe z(si)
at n = 2 spatial locations s2 = 1 and s5 = 4 as shown in Fig-
ure 6. Now, z(s1) and z(s5) are known. It is the conditional
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Figure 6: From the Gaussian process, we observe the values
z(s2) and z(s5) and now want to determine the conditional
distribution of the entire process z(s).

distribution of the remaining sites in S that is required.
Standard normal computations will give us the condi-

tional distribution of z(s), s ∈ {S \ {s1, s5}}. After reorder-
ing, we have
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then
z2|z1 ∼ N(Σ21Σ

−1
11 z1, Σ22 − Σ21Σ

−1
11 Σ12). (1)

See Anderson (1984), Section 2.5 for the derrivation. So if we
take the first two components of the 8-vector to be z1, and
the remaining six to be z2, we have the conditional mean of
z2|z1 = µ2|1 given by Σ21Σ

−1
11 z1 and the conditional variance

of z2|z1 = Σ2|1 given by Σ22 − Σ21Σ
−1
11 Σ12.

Instead of specifying S to be 8 points equally spaced be-
tween 0 and 7, we could define S to be a large number of
points equally spaced between 0 and 7. Equation (1) above
just as easily gives the conditional mean and variance of z(s)
over this S. Of course, drawing from (1) may become com-
putationally demanding if the number of prediction sites is
very large. Figure 7 shows the conditional mean of z(s) after
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Figure 7: The conditional mean of z(s) after observing z(s)
at the two spatial locations s = 1 and s = 4.

conditioning on the two points z(s = 1) and z(s = 4). The
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figure also shows 4 draws from the GP z(s) conditional on
these two observations.

Equation (1) is one of the foundations for working with
spatial models. Figures 8 and 9 show draws from the con-
ditional process over the one-dimensional space S = [0, 15]
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Figure 8: Conditional realizations of z(s) under different co-
variance models after observing the four datapoints given by
the black dots. The conditional mean of z(s) is given by the
thick black line; four conditional realizations are given by the
dashed lines.
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Figure 9: Conditional realizations of z(s) under different co-
variance models after observing the four datapoints given by
the black dots. The conditional mean of z(s) is given by the
thick black line; four conditional realizations are given by the
dashed lines.

after conditioning on the same 4 points. In each plot, a dif-
ferent covariance rule is used. The table below shows the
covariance rule used for each plot in Figures 8 and 9.
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covariance rules/functions for Figs 8 and 9
left plots right plots

Σij = exp{−|(si − sj)/2|2} Σij = exp{−|(si − sj)/1|1}

Σij = exp{−|(si − sj)/3|2} Σij = exp{−|(si − sj)/10|1}

Σij = exp{−|(si − sj)/5|2} Σij = exp{−|(si − sj)/20|1}
Note the left-hand column of plots correspond to GP’s

with a Gaussian covariance function; the right-hand column
of plots correspond to GP’s with an exponential covariance
function. Realizations from this exponential process are rougher
as compared to the realizations from GP’s with the Gaussian
covariance rule.

Equation (1) is just as applicable to higher dimensional
GP’s. As an example, the top left plot in Figure 10 shows a
realization from a GP over the 2-d lattice S = {1, 2, . . . , 20}2

with covariance given by Σij = exp{−|dij/2|2}. Here dij is
the Euclidean distance between points si = (si1, si2) and sj =
(sj1, sj2) in S. If we condition on the 20 points corresponding
to s2 = 1, the top right plot shows the conditional mean of
z(s) and the bottom two figures each show a realization of
the process conditional on the 20 edge values z(s1, s2 = 1).
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Figure 10: Top left: A realization from a 2-d Gaussian
process with mean zero and covariance function C(r) =
exp{−(r/2)2}. Top right: The conditional mean of the pro-
cess after conditioning on the points for which y = 1. Bottom
row: Realizations of the Gaussian process after conditioning
on the edge points at y = 1.
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2.3 Soft conditioning

In almost any actual application, the underlying spatial pro-
cess z(s) is never measured with complete accuracy at any
spatial location. Hence we need to be able to characterize
our uncertainty about z(s) given noisy observations. This
chapter approaches the problem from a Bayesian perspective.

For this example, we consider the mean 0 GP z(s) over
the 8 locations S = {0, 1, . . . , 7} with covariance rule Σij =
exp{−|si − sj |

2}. We take the observed data y now to be a
noisy version of z over each point in S

y(si) = z(si) + ǫ(si), i = 1, . . . , n,

with
ǫ(si)

iid
∼ N(0, σ2

y), i = 1, . . . , n.

The data are shown in Figure 11 with error bars that cor-
respond to ±2σy. Also shown is the true underlying process
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z(
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s

Figure 11: Data from a noisy observation of the continuous
Gaussian process z(s) at locations si = i, i = 0, . . . , 7. The
dots denote the observations and the bars show ±2σy.

z(s) about which we wish to infer.
Under the Bayesian paradigm, inference about z(s) is

based on its posterior distribution given the n = 8 noisy
observations y. The likelihood – or sampling model – for the
observed data is

L(y|z) ∝ |Σy|
− 1

2 exp{−
1

2
(y − z)T Σ−1

y (y − z)}
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where Σy = σ2
yIn and In denotes the n × n identity matrix.

The GP prior model for z(s) is

π(z) ∝ |Σz|
− 1

2 exp{− 1

2
zT Σ−1

z z}

where Σz is obtained by applying the covariance rule to the
n = 8 spatial locations in S. The resulting posterior density
for z given y is proportional to the product of the Likelihood
and prior

π(z|y) ∝ L(y|z) × π(z) (2)

∝ exp{− 1

2
zT (Σ−1

y + Σ−1
z )z + zT Σ−1

y y + f(y)}.

The unnormalized density above is that of a normal

z|y ∼ N(V Σ−1
y y, V )

where V = (Σ−1
y + Σ−1

z )−1. Note the posterior mean

V Σ−1
y y = (Σ−1

y + Σ−1
z )−1Σ−1

y y

is a precision weighted average of the prior mean (0) and the
data. The identity

(Σ−1
y + Σ−1

z )−1Σ−1
y = Σz(Σy + Σz)

−1

can be helpful for computations.
Often, the noisy observations at {s1, . . . , sn} will be used

to obtain the posterior distribution for z(s) at a collection
of m unobserved sights {s∗1, . . . , s

∗
m}. The previous recipe for

obtaining π(z|y) can easily be modified to accommodate this
situation.
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We define

yd = (y(s1), . . . , y(sn))T

zd = (z(s1), . . . , z(sn))T

y∗ = (y(s∗1), . . . , y(s∗m))T

z∗ = (z(s∗1), . . . , z(s∗m))T

y = (yd; y∗)

z = (zd; z∗)

so that y holds a n + m vector of “observations” (the last
m components of y are only notional), and z holds z(s) re-
stricted to the observation and prediction locations.

The sampling model for y is the same as before

L(y|z) ∝ |Σy|
− 1

2 exp{−
1

2
(y − z)T Σ−

y (y − z)}

except now

Σ−
y =

(

1
σ2

y
In 0

0 0m×m

)

and |Σy| is defined to be σ2n. Here zero precisions (infinite
variances) are specified for the components of y which are
unobserved. Also, the GP prior is exactly as before for z,

π(z) ∝ |Σz|
− 1

2 exp{− 1

2
zT Σ−1

z z}

but now Σz is the (n + m) × (n + m) covariance matrix ob-
tained by applying the covariance rule to the augmented set of
spatial locations–both observation and prediction locations.

The resulting posterior distribution for z = (zd, z∗) is
then

z|y ∼ N(V Σ−
y y, V )

where
V = (Σ−

y + Σ−1
z )−1.
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Note the posterior distribution for z only depends on Σy

through its inverse which is well defined. Figure 12 shows
realizations from π(z|y) where the prediction sites are a fine
grid of locations between 0 and 7.
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Figure 12: Conditional realizations of z(s) after the noisy
observations given in Figure 11.

2.3.1 An example

As an example we have n = 120 spatially located log-dioxin
concentration measurements taken from a 100m× 200m con-
taminated site in Missouri, USA (Ryti et al., 1993) shown in
the left plot of Figure 13.

We wish to predict the concentrations over a 15× 30 grid
denoted by the points in left plot of the figure. We specify
a mean 0 GP prior for z(s) – the log-concentration surface
with covariance rule

Σij = exp{−||(si − sj)/15||2}.

The posterior mean for the m = 15 · 30 prediction sites is
shown in the center plot. The prediction standard deviations,
given by the square root of the diagonal of the last m × m
submatrix of the posterior variance matrix V , is shown in the
right plot.

Here we specified the prior mean of z(s) as well as the
form of the covariance rule. An important component of spa-
tial modeling – ignored here, for now – is determining these
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Figure 13: Left: log dioxin concentration measurements from
the Piazza Road pilot study. Middle: posterior mean for the
concentration at the grid sites denoted by dots in the left
hand figure. Right: pointwise posterior standard deviation
of z(s) given the measurements.

features of the spatial model. The geostatistical references
mentioned in Section 1 have much more to say on this topic.
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3 Gaussian Markov random fields and

Bayesian computation

The posterior distribution of (2) depends on precision (inverse
covariance) matrices in the prior and likelihood, and can be
trivially rewritten

π(z|y) ∝ exp{−
1

2
zT (Wy + Wz)z + zT Wyy + f(y)}

where Wy = Σ−1
y and Wz = Σ−1

z . Hence

z|y ∼ N(Λ−1Wyy, Λ−1)

where Λ = Wy + Wz.
Rather than specifying a the prior dependence structure

for the spatial process z(s) through a covariance rule, one
can specify the dependence through the precision matrix Wz.
As we’ll see in this section, the is a natural connection be-
tween Wz and the conditional dependence structure of z(s).
These Gaussian Markov random field (GMRF) specifications
can be very effective for large systems, such as image mod-
els, because they are amenable to efficient computational ap-
proaches. The strong links between GMRF’s and MCMC
make it natural to introduce Gibbs sampling in this section
as well.

A GMRF is defined over a fixed set of sites s1, . . . , sn.
The vector z = (z(s1), . . . , z(sn))T is the spatial process to
be modeled with a GMRF specification. We now list some
notation and facts regarding a GMRF specification for z(s)
– a far more detailed description of GMRF’s can be found in
Rue and Held (2005):

• zi is the value of z(s) at site si;

• z−i is the n − 1-vector (z1, . . . , zi−1, zi+1, . . . , zn)T ;

• i ∼ j means si and sj are neighbors;
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• z∂i = {zj : i ∼ j} (i.e.. all zj for which sj and si are
neighbors);

• π(zi|z−i) is called the full conditional distribution of zi

(ie. its distribution given all other components of z);

• π(zi|z−i) = π(zi|z∂i) ie. the full conditional for zi de-
pends only on its neighbors.

A Markov random field (MRF) is defined by specifying a
neighborhood system and a set of n conditional densities
{π(zi|z∂i), i = 1, . . . , n}. Figure 14 gives examples of neigh-
borhood specifications on regular lattices. Note that not just
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Figure 14: Top: A 1st order (nearest neighbor) neighborhood
system for a regular 1-d lattice. Bottom left: A 1st order
neighborhood system for a regular 2-d lattice. Bottom right:
A 2nd order (nearest two neighbors) neighborhood system
for a regular 2-d lattice.

any set of n full conditionals will yield a valid joint distri-
bution π(z). This section uses only Gaussian MRF’s whose
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full conditionals are determined by the precision matrix Wz.
Section 6 gives an example of a non-Gaussian MRF.

3.1 Locally linear Gaussian MRF’s

For a given neighborhood system define

zi|z∂i ∼ N(z̄∂i, 1/ni)

where ni is the number of neighbors belonging to zi and z̄∂i

is the average of the zjs neighboring zi. The full conditional
density is then

π(zi|z∂i) ∝ exp







−
1

2

∑

j∈∂i

(zi − zj)
2







which implies a joint Gaussian distribution for z:

π(z) ∝ |Wz|
1

2 exp

{

−
1

2
zT Wzz

}

(3)

∝ |Wz|
1

2 exp







−
1

2

∑

i∼j

(zi − zj)
2







where the ij component of Wz is given by

Wzij =







ni if i = j
−1 if i ∼ j
0 otherwise

and the sum
∑

i∼j(zi − zj)
2 is over each edge pair in the

neighborhood system. This locally linear MRF model for z(s)
gives an alternative to the covariance based models described
in the previous section. Again, any practical application of
a MRF model will require that π(x) include a parameter to
scale z(s). This is addressed addressed at the end of Section
3.2 and beyond.
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As an example, if we take z to be the n = 5-site, 1st order
system below

h h h h h

z1 z2 z3 z4 z5

then the precision matrix Wz has the form

Wz =













1 −1 ◦ ◦ ◦
−1 2 −1 ◦ ◦
◦ −1 2 −1 ◦
◦ ◦ −1 2 −1
◦ ◦ ◦ −1 1













.

As a 1-d example, suppose there is an underlying true
process z = (z1, z2, . . . , z25)

T at spatial sites {1, 2, . . . , 25}
and we have noisy observations y = (y1, y2, . . . , y25)

T at each
site. This gives the sampling model

L(y|z) ∝ |Wy|
1

2 exp{−
1

2
(y − z)T Wy(y − z)}

where Wy = 1
4I, corresponding to noise variance of 4. We

specify a first order, locally linear GMRF for z so that the
prior has the form

π(z) ∝ |Wz|
1

2 exp{−
1

2
zT Wzz}.

Hence, the resulting posterior distribution for z given y is
multivariate Gaussian

z|y ∼ N(Λ−1Wyy, Λ−1),

where Λ = Wy + Wz. Figure 15 shows the true underlying
process z along with the noisy observations y in the top left
frame. Also shown in the figure are the posterior mean of
z, some realizations from the posterior, and pointwise 90%
intervals for z at each site.
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Figure 15: Data and posterior quantities for z which is given
a first order, locally linear, Gaussian MRF prior (3). The
data are independently scattered about the true process (top
left plot) according to a N(0, 4) distribution.

The locally linear specification for a 2-d lattice is also
quite simple. For the n = 9 site 2-d lattice below

i i i

i i i

i i i

z1 z2 z3

z4 z5 z6

z7 z8 z9

the locally linear specification leads to a 9×9 precision matrix
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of the form

Wz =





























2 −1 ◦ −1 ◦ ◦ ◦ ◦ ◦
−1 3 −1 ◦ −1 ◦ ◦ ◦ ◦
◦ −1 2 ◦ ◦ −1 ◦ ◦ ◦
−1 ◦ ◦ 3 −1 ◦ −1 ◦ ◦
◦ −1 ◦ −1 4 −1 ◦ −1 ◦
◦ ◦ −1 ◦ −1 3 ◦ ◦ −1
◦ ◦ ◦ −1 ◦ ◦ 2 −1 ◦
◦ ◦ ◦ ◦ −1 ◦ −1 3 −1
◦ ◦ ◦ ◦ ◦ −1 ◦ −1 2





























.

A 2-d example is shown in Figure 16 below. We generate
data y over a 20×20 lattice which is the true process z (shown
in the left plot of Figure 16) plus independent N(0, 4) errors.
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Figure 16: Left: Data and and true underlying process z
over a 20 × 20 lattice. Right: Posterior mean for z resulting
from the 2-d, first order, locally linear, Gaussian MRF prior
on z (3). As with Figure 15, the data are independently
scattered about the true process (left plot) according to a
N(0, 4) distribution.
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3.2 General Gaussian MRF’s

The locally linear GMRF specification is applicable in a wide
range of applications. However the details of a particular
application may require more structure than this prior can
deliver. A more general form for a GMRF is

π(z) ∝ |W |
1

2 exp

{

−
1

2
zT Wz

}

where W is any symmetric, positive (semi) definite matrix.
This model has full conditional distributions

zi|z−i ∼ N



−
1

Wii

n
∑

j 6=i

Wijzj ,
1

Wii



 .

Specifying W determines the neighborhood structure of the
system – Wij 6= 0 ⇔ sites i and j are neighbors. For
details regarding how one might construct alternative preci-
sion matrices see Besag et al., (1995), Besag and Kooperberg
(1995), and Rue and Tjelmeland (2002).

It’s worth pointing out that the locally linear GMRF spec-
ification results in an intrinsic prior distribution for z – that
is, the model is not proper since π(z) = π(z+c1) for any con-
stant c (of course, the resulting posterior is proper). A proper
alternative to the locally linear GMRF is one for which the
locally linear precision Wz is replaced by Wz + δI. Figure 17
shows realizations from the stationary (δ = 0.1) and intrin-
sic versions of the locally linear prior. These realizations are
scaled so that the increments between adjacent sizes are sim-
ilar. Even though the 2 realizations look similar if one only
compares increment magnitude, their global nature is clearly
quite different.

As an example of a possible GMRF specification, we take
the locally quadratic prior. Here the elements of W are cho-
sen so that E(zi|z∂i) is the best quadratic fit at si given
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Figure 17: Realizations from a stationary (left) and intrinsic
(right) locally linear GMRF priors. The stationary prior has
mean 0 and precision proportional to W + 0.1 · I. The draws
are conditional on z1 = 0. The stationary realization is scaled
so that the expected squared increment size E(zi − zi+1)

2 is
the same in both plots.

Figure 18: The locally quadratic GMRF specification defines
the precision matrix W so that E(zi|z∂i) is the fit of the
parabola estimated from the four pairs (sj , zj), j = i− 2, i−
1, i + 1, i + 2.

z∂i (see Figure 18). The four pairs of points (si−2, zi−2),
(si−1, zi−1), (si+1, zi+1) and (si+2, zi+2) are used to estimate
a parabola of the form ẑ(s) = b1s + b2s

2. The fit at site si is
just a linear combination of the 4 neighboring zj ’s. The re-
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sulting precision matrix is then band diagonal with 6’s along
the diagonal, −4’s on the one-off diagonals, and 1’s on the
two off diagonals. The precision matrix needs to be modi-
fied to account for edge sites. Note that the locally linear
GMRF specification defines W so that E(zi|z∂i) is the fit of
the line estimated from the two pairs (sj , zj), j = i− 1, i+1.
Later in this section some comparisons between posteriors
obtained under the locally quadratic and locally linear prior
formulations are made.

Finally, up to now, the GMRF priors depend only on
the precision matrix Wz. In any real application, it is useful
to allow for a parameter λz to scale this precision matrix.
From now on, a GMRF prior for z will typically include the
precision scalar so that

π(z|λz) ∝ λ
n
2

z exp{−
1

2
λzz

T Wzz}. (4)

The previous examples were fortuitously scaled so that λz = 1
was a good choice. The precision parameter λz controls the
regularity of the process z(s). Note the exponent in the term

λ
n
2

z in (4) is used here. More generally, it may be preferable
to use rank(W ) rather than n since W is often not of full
rank. This distinction makes little difference when n is large;
we use n throughout this primer.

3.3 Computing with large systems

Recall, in each of the examples in the previous section the
resulting posterior was of the form:

z|y ∼ N(Λ−1Wyy, Λ−1) (5)

where Λ = Wy +λzWz and λz scales the spatial process z. In
cases where n is quite large, computing the posterior mean
Λ−1Wyy can be prohibitive. Here the local nature of the
MRF specification can be quite helpful.
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The full conditionals of the density implied by (5) are

π(zi|z∂i, y) ∝ exp







−
1

2
λy(yi − zi)

2 −
1

2
λzWiiz

2
i − λz

∑

j∈∂i

Wijzizj







which implies

zi|z∂i, y ∼ N

(

λyyi + λz
∑

j∈∂i Wijzj

λy + λzWii
,

1

λy + λzWii

)

.

In the case of the locally linear GMRF, this simplifies to

zi|z∂i, y ∼ N

(

λyyi + niλz z̄∂i

λy + niλz
,

1

λy + niλz

)

where

ni = # of neighbors belonging to si and

z̄∂i =
1

ni

∑

j∈∂i

zj .

3.3.1 Iterated conditional modes

The method of iterated conditional modes (ICM) (Besag,
1986) uses the univariate full conditional distributions in an
iterative scheme to determine the mode of the posterior dis-
tribution π(z|y). The algorithm iteratively replaces each zi

by the mode of it’s full conditional:

for t = 1, . . . , nscan {
for i = 1, . . . , n {

set zi =
λyyi + niλz z̄∂i

λy + niλz

}
}.

Here the newly updated zjs should be used when computing
z̄∂i.
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In general, the eventual value ẑICM will correspond to
a local mode of the posterior density π(z|y). If π(z|y) is
Gaussian (as it is here) ẑICM will correspond to the poste-
rior mean, which is the global optimum of π(z|y). Hence,
ICM iteratively solves the posterior mean equation ẑICM =
Λ−1Wyy.

Figure 19 shows ICM being carried out on a 1-d example.
The spatial process z is initialized at the observed data y.
By the 10th scan through the vector z, the posterior mean
solution is reached.
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Figure 19: ICM applied to a 1-d example where y = z +
ǫ and z is given a locally linear GMRF prior so that the
resulting posterior distribution is given by (5). By the 10th
scan through the data, the ICM solution is reached.

3.3.2 Gibbs sampling

While ICM allows one to compute the posterior mean, Markov
chain Monte Carlo (MCMC) gives an approach for generat-
ing realizations from the posterior distribution. With realiza-
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tions, one can explore many features of π(z|y) – in particular,
uncertainties regarding z can be assessed.

The Gibbs sampler is a MCMC scheme which iteratively
replaces each zi by a draw from its full conditional:

for t = 1, . . . ,nscan {
for i = 1, . . . , n {

draw zi ∼ N

(

λyyi + niλz z̄∂i

λy + niλz
,

1

λy + niλz

)

}
}

Figure 20 shows a 1-d example of sampling from the pos-
terior resulting from a locally linear GMRF prior for z over
25 regularly spaced sites. The unknown spatial process z is
initialized at 0. The MCMC continues, giving a dependent
sequence of T realizations z1, . . . , zT which can be treated as
draws from the posterior distribution π(z|y). Of course, the
early realizations will be influenced by the initialization of z.
Hence it is sensible to discard these early MCMC draws until
the sequence has “forgotten” the initialization value of z.

Accounting for unknown model parameters

In most applications, there are various nuisance parameters
that need to be incorporated into the model. In the examples
of this section, such parameters might include the precision of
the observation measurements and the scaling of the GMRF
prior for z(s).

Assume the data y are formed corresponding to the model

y = z + ǫ, where ǫ ∼ N(0,
1

λy
In).

Hence, the likelihood

L(y|z, λy) ∝ λ
n
2

y exp{− 1

2
λy(y − z)T (y − z)}
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Figure 20: Gibbs sampling applied to the posterior distribu-
tion (5) resulting from the data y (denoted by the dots) and a
locally linear GMRF specification for the underlying spatial
process z. The data are generated from the model y = z + ǫ,
where the true value for z is given by the smooth red line.
z is initialized at 0. The green line in the bottom right plot
shows the posterior mean estimated from the 1000 MCMC
realizations.

has the precision parameter λy that describes the size of the
observation errors. Similarly, the GMRF prior for z has the
form

π(z|λz) ∝ λ
n
2

z exp{− 1

2
λzz

T Wzz}

where the precision λz controls the regularity in the spatial
process z.

In order to account for uncertainty regarding these preci-
sion parameters, uninformative, conjugate priors are specified
them:

π(λy) ∝ λ
ay−1
y exp{−byλy};

π(λz) ∝ λaz−1
z exp{−bzλz}.

Typically, π(λy) and π(λz) are chosen to be rather uninfor-
mative. The choice of ay = az = 1 and by = bz = .0001 will
usually work well. If λ is expected to be very large, then a
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smaller value b will be necessary. Note that using a value of
az very close to 0 places a lot of prior mass for λz near 0.
This can lead to spurrious posterior results (Gelman, 2005).

The resulting posterior distribution is proportional to the
product of the likelihood and prior

π(z, λy, λz|y) ∝ L(y|z, λy) × π(z|λz) × π(λy) × π(λz) (6)

∝ λ
n
2

y exp{− 1

2
λy(y − z)T (y − z)} ×

λ
n
2

z exp{− 1

2
λzz

T Wzz} ×

λ
ay−1
y exp{−byλy} × λaz−1

z exp{−bzλz}

which describes uncertainty regarding (z, λy, λz).
The full conditional densities of π(z, λy, λz|y) are then

π(z|λy, λz, y) ∝ exp{−
1

2
λy(y − z)T (y − z) −

1

2
λzz

T Wzz}

π(λy|z, λz, y) ∝ λ
n/2+ay−1
y exp{−[by + .5(y − z)T (y − z)]λy}

π(λz|z, λy, y) ∝ λn/2+az−1
z exp{−(bz + .5zT Wzz)λz}.

Each of these full conditionals corresponds to a standard dis-
tribution – normal for z and Gamma for the precisions.

z|λy, λz, y ∼ N(Λ−1λyy, Λ−1), where Λ = λyIn + λzWz

λy|z, λz, y ∼ Γ(n/2 + ay, by + .5(y − z)T (y − z))

λz|z, λy, y ∼ Γ(n/2 + az, bz + .5zT Wzz)

For z, one can also determine the full conditionals corre-
sponding to each component.

zi|z−i, λy, λz, y ∼ N

(

λyyi + niλz z̄∂i

λy + niλz
,

1

λy + niλz

)

, i = 1, . . . , n

The Gibbs sampler implementation of MCMC for π(z, λy, λz|y)
simply initializes (z, λy, λz) and then iteratively samples from

32



each of the full conditionals. For the results shown in Fig-
ure 21, z was initialized at 1

2
y + 1

2
ȳ, and the two precisions

were set to draws from their full conditionals given the ini-
tial value for the vector z. The Gibbs sampler was run for
T = 2000 scans through each of the parameters, and the first
500 realizations were discarded to remove the effect of the
initialization.
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Figure 21: Summaries of the Gibbs sampling output pro-
duced from sampling the posterior distribution (6). Top:
pointwise 90% credible intervals for z; Bottom left: a his-
togram of draws of the error standard deviation obtained by

simply taking λ
− 1

2

y at each iteration; Bottom right: the pos-
terior distribution of the average of z.

Figure 21 shows some summaries of the MCMC output
produced by this Gibbs sampler: pointwise 90% credible in-
tervals for each component of z; the posterior distribution for
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σy = λ
− 1

2

y ; and the posterior distribution of z̄ = 1
n

∑n
i=1 zi.

Marginal distributions are simply estimated with histograms
of the MCMC output. This example highlights how easy it
is to infer about functions of z. Here we obtained the poste-
rior distribution of the spatial mean of z. One could just as
easily infer about other quantities such as the max of z, or
the spatial location where the max of z is reached.

Figures 22 and 23 show posterior 80% credible intervals
for z under two different formulations – the locally linear and
the locally quadratic GMRFs. The spatial process resides
on the integers from 1 to 50. Data were generated from the
model y = z + ǫ where the true value of z is given by the
solid line in the figures, and ǫ ∼ N(0, 1

10I50). The precision
parameters λy and λz are treated as unknown and assigned
Γ(1, .0001) priors. Each row in the figures corresponds to a
different realization for ǫ. The dotted lines connect the re-
sulting data points. Generally, the locally linear formulation
does a better job reconstructing z and more accurately esti-
mates the error precision λy given the data in Figure 22. For
the sine wave data in Figure 23 the locally quadratic prior
leads to more faithful reconstructions.
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Figure 22: Posterior reconstructions under the locally lin-
ear and locally quadratic GMRF formulations over sites
{1, 2, . . . , 50}. In each row data (dotted lines) are generated
according to the model y = z + ǫ where the true z is given
by the solid line. Pointwise posterior 80% intervals are com-
puted for z and shown by the gray regions in the plots. The
left column shows credible intervals resulting from the locally
linear formulation. The right column shows credible intervals
resulting from the locally quadratic formulation.
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Figure 23: Posterior reconstructions under the locally lin-
ear and locally quadratic GMRF formulations over sites
{1, 2, . . . , 50}. In each row data (dotted lines) are generated
according to the model y = z + ǫ where the true z is given
by the solid line. Pointwise posterior 80% intervals are com-
puted for z and shown by the gray regions in the plots. The
left column shows credible intervals resulting from the locally
linear formulation. The right column shows credible intervals
resulting from the locally quadratic formulation.
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4 Convolution-based spatial models

GMRF models work well for image and lattice data, however
when data are irregularly spaced, a continuous model for the
spatial process z(s) is usually preferable. In this section con-
volution – or, equivalently, kernel – models are introduced.
These models construct a continuous spatial model z(s) by
smoothing out a simple, regularly spaced latent process. In
some cases, a GMRF model is used for this latent process.

The convolution process z(s) is determined by specifying
a latent process x(s) and a smoothing kernel k(s). We restrict
the latent process x(s) to be nonzero at the fixed spatial sites
ω1, . . . , ωm, also in S and define x = (x1, . . . , xm)T where
xj = x(ωj), j = 1, . . . , m. For now, the xj ’s are modeled
as independent draws from a N(0, 1/λx) distribution. The
resulting continuous Gaussian process is then

z(s) =

∫

S
k(u − s)dx(u)

=
m
∑

j=1

k(ωj − s)xj (7)

where k(ωj − ·) is a kernel centered at ωj . This convolution
model is depicted in Figure 24 below. Typically, k(s) is taken

 

 

Figure 24: A one-dimensional Gaussian process obtained
from smoothed white noise.

to be a normal kernel centered at 0, with a sd σk.
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As long as k(s) is symmetric, the same representation for
z(s) could be explained as a basis construction. Define the
m basis functions k1(s), . . . , km(s), where kj(s) = k(s − ωj)
as shown in Figure 25. Here the kj(s)’s are normal densities
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Figure 25: Basis functions to construct a 1-d spatial process.
Here the m = 6 basis functions kj(s) are normal kernels cen-
tered at spatial locations ωj given by the dots. The sd of the
kernels is equal to the spacing of the ωj ’s.

centered at spatial locations ωj ; the ωj ’s are shown by the
dots in Figure 25. The standard deviation of the normal
density σk is set equal to the spacing between adjacent ωj ’s.
The continuous spatial process z(s), s ∈ S, with S = [0, 10]
is defined as

z(s) =
m
∑

j=1

kj(s)xj where x ∼ N(0, Im). (8)

Note the bsis representation in (8) is the foundation of a
number of kernel and basis approaches for fitting data. See
Hastie et al.(2001) for an overview of these methods.

If our interest is restricted to a finite set of n spatial loca-
tions s1, . . . , sn, the n-vector z = (z(s1), . . . , z(sn))T is given
by

z = Kx where Kij = kj(si). (9)
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Frequently, applications require the value of z(s) over a grid
of spatial locations. Hence, the discrete representation above
can be quite useful.

With either interpretation, convolution or basis, the spa-
tial process z(s) is determined by the distribution of x, the
latent sites ω1, . . . , ωm, and the kernel k(s). Figure 26 shows
how z(s) is constructed from a random draw of the m = 6-
vector x according to (7).
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Figure 26: A spatial process realization z(s) constructed from
a basis representation. The basis kernels, weighted by a stan-
dard normal draw, are shown in the left plot. The resulting
process z(s) is the sum of these weighted kernels.

Continuing with this 1-d example, if we restrict z(s) to a
fine grid of n spatial locations s1, . . . , sn between 0 and 10,
the discrete representation (9) leads to the result that

z ∼ N(0, KKT ).

Here K is a n×m matrix, so that Σz = KKT is n×n. Figure
27 shows the resulting covariance matrix for z as the number
of points m in the latent process x varies. As m increases,
the kernel is scaled down to keep the marginal variance of
z(s) constant. Hence if k(s) denotes the kernel when m = 6,
we use 6

10k(s) when m = 10 and 6
20k(s) when m = 20. In

the top plot ω1, . . . , ωm consist of 20 equally spaced locations
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between −2 and 12. In the middle plot ω1, . . . , ωm consist
of 10 equally spaced locations between −2 and 12; in the
bottom plot, it’s m = 6. The resulting covariance in each
case is nearly identical. This means that for any of these
constructions, the induced model for the spatial process z(s)
is just about the same. Hence for this particular choice of
kernel, m need only be as large as 6.

This convolution – or kernel – based construction of a
spatial process z(s) is only appropriate when a smooth rep-
resentation of z(s) is ok. Using a very peaked kernel (k(s) =
|s|−.5 exp{−|s|}, for example) will require a very dense set of
support locations ω1, . . . , ωm, which will make this approach
impractical. Smooth kernels that have been used include the
normal density and the tricube (Cleveland, 1979), which has
the feature of bounded support. For a given kernel width,
one would like the spacing of the ωj ’s to be as spread out
as possible for computational savings. However making the
spacings too large can lead to unwanted “dead regions” in
z(s) where the process moves to 0. For the normal kernel in
1 or 2 dimensions, spacing the ωj ’s no wider than the ker-
nel sd works fine. Finally, the width of the smoothing kernel
k(s) controls the nature of z(s) in exactly the same way the
distance scaling in the covariance rule does in Section 2.

4.1 Modeling and estimation

The appeal of these convolution representations for z(s) is
their flexibility as a component of more general model for-
mulations. As an example, consider recording data y =
(y(s1), . . . , y(sn))T at spatial locations s1, . . . , sn. Once knot
locations ωj , j = 1, . . . , m and kernel choice k(s) are spec-
ified, the remaining model formulation is trivial. Assuming
y(si) is equal to the spatial process z(si) plus an independent
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Figure 27: Basis kernels and covariance for the induced spa-
tial process z(s) as the dimension m of the latent process x
varies. Here the covariance of z is nearly identical for each
value of m – top: m = 20; middle m = 10; bottom: m = 6.

measurement error results in the likelihood

L(y|x, λy) ∝ λ
n
2

y exp

{

−
1

2
λy(y − Kx)T (y − Kx)

}
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where Kij = k(ωj − si). For priors we have

π(x|λx) ∝ λ
m
2

x exp
{

− 1

2
λxxT x

}

π(λx) ∝ λax−1
x exp{−bxλx}

π(λy) ∝ λ
ay−1
y exp{−byλy}.

This results in the posterior distribution

π(x, λx, λy|y) ∝ λ
ay+n

2
−1

y exp
{

−λy[by + .5(y − Kx)T (y − Kx)]
}

×

λ
ax+m

2
−1

x exp
{

−λx[bx + .5xT x]
}

.

The full conditionals then have the basic forms:

π(x| · · · ) ∝ exp{−
1

2
[λyx

T KT Kx − 2λyx
T KT y + λxxT x]}

π(λx| · · · ) ∝ λ
ax+m

2
−1

x exp
{

−λx[bx + .5xT x]
}

π(λy| · · · ) ∝ λ
ay+n

2
−1

y exp
{

−λy[by + .5(y − Kx)T (y − Kx)]
}

.

These densities are recognized as standard forms so that a
Gibbs sampler can be easily implemented by cycling through
the parameters and making the draws below.

x| · · · ∼ N((λyK
T K + λxIm)−1λyK

T y, (λyK
T K + λxIm)−1)

λx| · · · ∼ Γ(ax +
m

2
, bx + .5xT x)

λy| · · · ∼ Γ(ay +
n

2
, by + .5(y − Kx)T (y − Kx))

As an example, we use n = 18 data points from spatial
locations evenly spaced between 0 and 10 as shown in Figure
28. The prior model for z(s) is constructed using m = 20
knot locations evenly spaced between −2 and 12. Finally,
the kernel k(s) is a normal density with a sd of 2. The re-
sulting posterior estimate of z(s) is shown in Figure 28, along

42



with the marginal posterior distributions for λy and λx. The
following figure – Figure 29 – shows the same posterior sum-
maries using the same data and an identical formulation, ex-
cept that the kernel sd is 1 – half as wide as the one used
for Figure 28. The true value for λy is 15 which is consistent
with the formulation with the wider kernel. Note the narrow
kernel used in the second formulation leads to a very wiggly
estimate of z(s) and a very large error precision λy. Hence
the estimated spatial process nearly interpolates the data.
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Figure 28: Data and posterior estimates. Top left: data y
for estimating the underlying spatial process z(s). Top right:
posterior mean and pointwise 80% credible intervals for z(s).
Bottom: histograms of the posterior realizations for λy (left)
and λx (right). Here the kernel was normal with a sd of 2.

Clearly, the kernel width can have a dramatic effect on
the analysis. This width parameter could be formally incor-
porated into the analysis by assigning it a prior and including
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Figure 29: Data and posterior estimates. Top left: data y
for estimating the underlying spatial process z(s). Top right:
posterior mean and pointwise 80% credible intervals for z(s).
Bottom: histograms of the posterior realizations for λy (left)
and λx (right). Here the kernel was normal with a sd of 1 –
half of that used in the previous figure.

it in the resulting MCMC. This will typically lead to a sub-
stantial amount of additional computation. Another alter-
native is to use a cross validation approach to settle on the
kernel width. A couple of alternatives to these well estab-
lished approaches for selecting the kernel width are discussed
later in this section. The first is to modify the prior distribu-
tion on the latent process x; the second is to use more than
one kernel in the basis construction.
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4.2 Using a MRF model for x

If we take the formulation described in Section 4.1 and replace
the i.i.d. prior for x with a GMRF prior

π(x|λx) ∝ λ
m
2

x exp
{

− 1

2
λxxT Wx

}

we get the posterior

π(x, λx, λy|y) ∝ λ
ay+n

2
−1

y exp
{

−λy[by + .5(y − Kx)T (y − Kx)]
}

×

λ
ax+m

2
−1

x exp
{

−λx[bx + .5xT Wx]
}

.

The resulting Gibbs sampler cycles through the steps

x| · · · ∼ N((λyK
T K + λxW )−1λyK

T y, (λyK
T K + λxW )−1)

λx| · · · ∼ Γ(ax +
m

2
, bx + .5xT x)

λy| · · · ∼ Γ(ay +
n

2
, by + .5(y − Kx)T (y − Kx))

which are no more difficult than those from the original in-
dependent x formulation.

The advantage of allowing dependence in the latent pro-
cess is that the induced prior distribution for z(s) is now

π(z) ∝ λ
m
2

x exp{− 1

2
λxzT KWKT z}.

This is an intrinsic process and λx controls the regularity in
z(s) in a way similar to kernel width. To see this, consider
the posterior analyses shown in Figure 30.

Here the data are n = 12 observations from spatial loca-
tions evenly spaced between 0 and 10 as shown by the circle
plotting symbols in Figure 30. The data were generated by
adding white noise to a spatial process z(s) which was con-
structed using m = 20 knot locations evenly spaced between
−2 and 12, and a normal kernel k(s) with a sd of 2.5.

The top plot is the result from the formulation using the
iid prior for x along with a narrow kernel (sd = .6). The mid-
dle plot is the result from the formulation using the locally
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Figure 30: Posterior estimates of the underlying spatial pro-
cess z(s) under 3 different formulations. Top: iid prior for x
with a narrow kernel (sd=.6); Middle: locally linear GMRF
prior for x with a narrow kernel (sd=.6) Bottom: iid prior
for x with a wide kernel (sd=2.5). The data were generated
by adding noise to a spatial process generated using the wide
kernel. The GMRF formulation uses the dependence in x to
overcome the overly narrow specification of the kernel width.
The right hand column of plots shows the posterior mean
estimate of k(s − ωj)xj under each of the formulations.

linear GMRF prior for x along with the same narrow kernel.
For the sake of comparison, the bottom plot gives the result
from the formulation using the iid prior for x along with the
correct, wide kernel. Clearly the formulation corresponding
to the top plot overfits the data because the kernel is too nar-
row (by more than a factor of 4). However the GMRF formu-
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lation overcomes this misspecification of the kernel width by
controlling the dependence between components of x. The
smoothness in the posterior reconstruction of z(s) is quite
similar to that of the formulation in the bottom plot which
uses the correct model for the true underlying process z(s)
from which the data were generated.

Note that if the smoothing kernel k(s) is specified to be
wider than the data warrant, there is no way the MRF prior
on x can overcome this misspecification. For more details on
such models, see Lee et al., (2005).

4.3 A multiresolution example

With these tools, it is easy to specify a spatial model which
is the sum of multiple processes, each with different spatial
dependence properties. To be concrete, consider the ozone
measurements taken on a summer day over the Eastern U.S.
shown in Figure 31. We may use a spatial process z(s) to
predict ozone measurements at sites where no monitors ex-
ist. Our multiresolution model decomposes the field into a
coarse resolution component which varies slowly as a function
of spatial distance, and a fine resolution component which
changes more quickly with spatial distance

z(s) = zcoarse(s) + zfine(s).

Separate convolution priors are used for coarse and fine
spatial model components. The coarse process uses mc = 27
locations ωc

1, . . . , ω
c
mc

on a hexagonal grid as shown in Figure
31. The latent process xc is given an independent normal
prior with precision λc:

xc = (xc1, . . . , xcmc)
T ∼ N(0,

1

λc
Imc).

The coarse kernel kc(s) is normal with a sd that is equal to
the grid spacing shown in the top left plot of Figure 31.
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The fine process uses mf = 87 locations ωf
1 , . . . , ωf

mf
on

a hexagonal grid as shown in Figure 31. The latent process
xf is given an independent normal prior with precision λf :

xf = (xf1, . . . , xfmf
)T ∼ N(0,

1

λf
Imf

).

The fine kernel kf (s) is normal with a sd that is equal to the
grid spacing shown in the bottom left plot of Figure 31.

Now the data, which consist of n = 510 observations, can
be modeled as a sum of the two spatial processes plus white
noise

y = Kcxc + Kfxf + ǫ

= Kx + ǫ

where

K =
(

Kc Kf

)

and x =

(

xc

xf

)

.

If we define

Wx =

(

λcImc 0
0 λfImf

)

then this formulation is almost identical to previous specifica-
tions. Only now there are two precision parameters governing
x. The resulting Gibbs sampler implementation is then

x| · · · ∼ N((λyK
T K + Wx)−1λyK

T y, (λyK
T K + Wx)−1)

λc| · · · ∼ Γ(ax +
mc

2
, bx + .5xT

c xc)

λf | · · · ∼ Γ(ax +
mf

2
, bx + .5xT

f xf )

λy| · · · ∼ Γ(ay +
n

2
, by + .5(y − Kx)T (y − Kx)).

The posterior means for the coarse resolution process zcoarse(s)
and the multiresolution process z(s) are shown in Figure 31.
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Figure 31: A multiresolution ozone model. The ozone measure-
ments from a single summer day in the Eastern U.S. (shown in
both of the left hand plots) are modeled as the sum of two process
convolution models, one coarse and one fine. The knot locations for
the coarse model are shown in the top left plot; the knot locations
for the fine process are shown in the bottom left plot. The re-
sulting posterior mean for zcoarse(s) is given in the top right plot;
that of the multiresolution model z(s) = zcoarse(s) + zfine(s) is
shown in the bottom right plot. The kernels for the two processes
are normal, each of whose sd corresponds to their respective knot
spacing.

This model, which effectively uses two different kernel widths,
can capture more complicated dependence structure in a spa-
tial process z(s). It also can result in a model with a single
kernel width if the data support this by moving the posterior
distribution for one of λc or λf to a very large value. This
approach has links to wavelets (see Vidakovic (1999)) and
could be modified to have more resolutions if the application
calls for it.
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4.4 A binary spatial model

Here we show how these convolution-based models are quite
useful for modeling non-Gaussian spatial fields. Here we fo-
cus on a binary spatial model, although these ideas could be
extended to other non-Gaussian fields as well. This binary
model borrows from the ideas of De Olivaira (2000).

Consider an example shown in Figure 32 where there ex-
ists a binary field z∗(s) over S = [0, 20] × [0, 20]. We obtain
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true field

Figure 32: Observations from a binary field. The left plot
shows n = 9 noisy measurements from the true binary field
z∗(s) shown on the right. The blue denotes z∗(s) = 1; red de-
notes z∗(s) = 0. The datapoints y(si) are created by adding
a N(0, 1) error to the true field z∗(si).

n = 9 noisy measurements y = (y1, . . . , yn)T of this field at
spatial locations s1, . . . , sn shown in the figure. The sampling
model is

yi = z∗(si) + ǫi, i = 1, . . . , n, where ǫ ∼ N(0, In).

The binary field z∗(s) is modeled as a Gaussian field
z(s), constructed via process convolution, and then assigning
z∗(s) = I[z(s) > 0] as shown in Figure 33. The knot loca-
tions are a 5 × 5 lattice shown in Figure 33 so that m = 25;
the smoothing kernel is Gaussian and is also shown in the
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Figure 33: Constructing a binary field z∗(s) by clipping a
Gaussian field z(s). The Gaussian process z(s) is constructed
by smoothing out a lattice of iid normal realizations x. This
resulting field is then “clipped” so that z∗(s) = I[z(s) > 0].

figure. Take z∗ to denote the value of the binary process at
the data locations z∗ = (z∗(s1), . . . , z

∗(sn))T and recall that
z∗ is a deterministic function of the m-vector x.

The resulting posterior distribution for this formulation
is simply the product of the likelihood

L(y|z∗) ∝ exp{− 1

2
(y − z∗)T (y − z∗)}

and the independent normal prior for x

π(x) ∝ exp{− 1

2
xT x}

giving

π(x|y) ∝ exp{− 1

2
(y − z∗)T (y − z∗) − 1

2
xT x}.
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The full conditional distributions resulting from this for-
mulation are

π(xj |x−j , y) ∝ exp{− 1

2
(y−z∗)T (y−z∗)− 1

2
x2

j}, j = 1, . . . , m.

Because z∗ is a nonlinear function of x, this density does not
have a recognizable form. Hence a Gibbs sampler is not an
easy option here. A simple alternative is to use Metropo-
lis updating (Metropolis et al., 1953) to generate a MCMC
sample from this posterior.

A Metropolis implementation for sampling from π(x|y)
can be carried out by first initializing x at 0 and then cycling
thru full conditionals updating each xj in turn, according to
the Metropolis rules:

• generate proposal x′
j ∼ U [xj − r, xj + r];

• compute acceptance probability

α = min

{

1,
π(x′

j |x−j , y)

π(xj |x−j , y)

}

;

• update xj to new value:

xnew
j =

{

x′
j with probability α

xj with probability 1 − α;

Here the sampler ran for T = 1000 scans, giving realizations
x1, . . . , xT from the posterior. The output from the first 100
scans were discarded for burn in. Note, we tuned the proposal
width r so that the proposal x′

j is accepted about half the
time.

A subset of posterior realizations for z∗(s) are shown in
Figure 34. There is clearly a wide range of configurations for
z∗(s) that are consistent with the data. The resulting poste-
rior mean estimate for z∗(s) is shown in Figure 35. The pro-
cess convolution formulation for z∗(s) works very well with
the Metropolis MCMC implementation. One reason for this
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Figure 34: Posterior realizations of the binary process z∗(s).

is that the individual xj ’s control just a local piece of the
entire process z∗(s). Hence updates to a xj are effectively
updates to a local region of z∗(s).
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Figure 35: Data (left), true binary field z∗(s) (middle), and
posterior mean estimate of z∗(s) (right). The posterior mean
estimate is simply the average of the MCMC draws of z∗(s).
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4.4.1 Archeology application

This same model can be applied to the Archeology applica-
tion of Besag et al., (1991). In this application, as well as
many other archeological investigations, enhanced soil phos-
phate content, due to decomposition of organic mater, is often
found at known locations of archeological activity. In such
areas, measurements of phosphate concentration can help aid
in determining specific sites of archeological activity.

The application centers on a square plot divided into a 16
× 16 grid of sites, each measuring 10 meters by 10 meters;
The layout and data are shown in Figure 36. As in the earlier
analysis, we assume the existence of an underlying process,
z∗(s), with z∗(si) = 1 or 0, according to whether there is or
is not previous activity at site si. The goal here is not only
to produce a classification, but also to explore the posterior
distribution of z∗(s)|y and to determine posterior probability
of previous activity at each site.

The sampling model is adapted from the original appli-
cation and has the form:

y(si)|z
∗(si) ∼ N(µ(z∗(si)), 1) where µ(0) = 1, µ(1) = 2.

Recall z(s) =
∑m

j=1 xjk(s − ωj) and z∗(s) = I[z(s) > 0].
A m = 8 × 8 lattice of knot locations ω1, . . . , ωm is used as
shown in Figure 36. The sd of k(s) is equal to the minimum
knot spacings. A brief posterior summary for z∗(s) is given
in Figure 36 which shows posterior realizations of z∗(s) along
with its posterior mean.
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Figure 36: Data, posterior mean, posterior realizations, and
knot locations for the archeology application of Besag et al.,
(1991). Here, the binary process is a “clipped” Gaussian field
constructed from a process convolution model. The bottom
right frame shows the knot locations and a circle that corre-
sponds to 1 sd of the bivariate smoothing kernel k(s).
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Historical note on Metropolis

Nick Metropolis (pictured in Figure 37) was involved with
the original Manhattan Project at Los Alamos during World
War II. He, along with John von Neumann, were computing
pioneers at Los Alamos. He is the inventor of the Monte
Carlo Method as well as MCMC, which was first carried out
in 1953 on the MANIAC I computer (also pictured in Figure
37). This machine was the first computer that could carry out
instructions based on previous computations. The MANIAC
I also ran the first computer game – chess.

Figure 37: Left: Nick Metropolis, a computing pioneer and
inventor of the Monte Carlo method. Right: the MANIAC I
computer.
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5 Convolution-based space-time models

The convolution-based models can easily be extended in two
basic ways to model space-time processes. The first simply
defines the latent process x(s, t) to reside on knot values taken
over a lattice in space and time, and then defines the kernel
k(s, t) to smooth over this augmented space. Mathematically,
this approach is the same as that of the previous section,
only an additional dimension is added. The second approach
allows the latent spatial process to evolve over time, so that
at any given time, it can be convolved with the spatial kernel
k(s) to give a spatial field z(s, t) at time t. Both of these
examples will be demonstrated with an application.

5.1 A space-time convolution model

The most straightforward extension of the spatial convolution
specification to space-time models extends the spatial domain
to a space-time domain S×T . The latent knot process x(s, t)
is defined over m points {(ω1, τ1), . . . , (ωm, τm)} within S×T .
In addition, the smoothing kernel k(s, t) is also defined over
the space-time domain. The space-time process z(s, t) is now
defined as

z(s, t) =

∫

S×T
k((ω, τ) − (s, t))dx(ω, τ)

=
m
∑

j=1

k((ωj , τj) − (s, t))x(ωj , τj)

=
m
∑

j=1

kst(ωj , τj)xj

where xj = x(ωj , τj), j = 1, . . . , m. This constructive model
is shown in Figure 38.

We now use this model to build an interpolative space
time model z(s, t) for ocean temperatures on a manifold of
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latent process x(s,t) kernel k(s,t) space-time field z(s,t)
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Figure 38: A convolution based space-time model. Here a
space time-model z(s, t) (right) is constructed by defining a
latent process x(s, t) over space and time (left) and convolv-
ing it with the kernel k(s, t) (middle).

constant potential density. This application is taken from
Higdon (1998). The data consist of n = 3987 temperature
measurements taken between 1908 and 1988 shown in Figure
39. We take y = (y1, . . . , yn)T to denote the recorded temper-
atures at irregularly sampled locations (s1, tt), . . . , (sn, tn).
We center the data so that ȳ = 0. We assume a simple model
for which the data are equal to a smooth process z(s, t) plus
white noise.

The smooth space-time process z(s, t) is constructed by
smoothing a latent space-time process x with a spatially vary-
ing kernel ks(s, t). The latent process resides on a regular grid
over space and time. The spatial locations are shown in the
right hand plot of Figure 39. The kernel kst(ω, τ) at any given
spatial location has the product form ks(ω)kt(τ) where ks(·)
varies with with spatial location and and kt(·) is a fixed, 1-d
normal kernel with a sd of 7 years. This product form for
kst(ω, τ) implies a separable covariance rule that is the prod-
uct of a purely temporal covariance rule and a purely spatial
covariance rule. The spatially varying kernel ks(·) is bivariate
normal. The 1 sd ellipse is shown for 8 spatial locations in
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smoothing kernels and latent grid

Figure 39: Left: Measured temperatures between 1908 and
1988 along a manifold of constant potential density, which
corresponds to depths well below 1000m. The data consist
of 3987 measurements. Right: Spatial locations of the latent
space-time process x(s, t). The time spacings are every seven
years. Also shown are ellipses that correspond to one sd of
the spatially varying gaussian smoothing kernels ks(·).
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Figure 39. Hence, the space-time process z(s, t) is given by

z(s, t) =

m
∑

j=1

kst(ωj , τj)xj .

The details of estimating and specifying the kernel is given
in Higdon (1998).

The resulting formulation is summarized below.

Likelihood:

L(y|x, λy) ∝ λ
n
2

y exp

{

−
1

2
λy(y − Kx)T (y − Kx)

}

where Kij = ksiti(ωj , τj).

Priors:

π(x|λx) ∝ λ
m
2

x exp

{

−
1

2
λxxT x

}

π(λx) ∝ λax−1
x exp{−bxλx}

π(λy) ∝ λ
ay−1
y exp{−byλy}

Posterior:

π(x, λx, λy|y) ∝ λ
ay+n

2
−1

y exp
{

−λy[by + .5(y − Kx)T (y − Kx)]
}

×

λ
ax+m

2
−1

x exp
{

−λx[bx + .5xT x]
}

This posterior is exactly in the same form as the analogous
posterior from the purely spatial convolution formulations.
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The Gibbs sampler implementation is then

x| · · · ∼ N((λyK
T K + λxIm)−1λyK

T y, (λyK
T K + λxIm)−1)

xj | · · · ∼ N

(

λyr
T
j kj

λykT
j kj + λx

,
1

λykT
j kj + λx

)

λx| · · · ∼ Γ(ax +
m

2
, bx + .5xT x)

λy| · · · ∼ Γ(ay +
n

2
, by + .5(y − Kx)T (y − Kx))

where kj is jth column of K and rj = y −
∑

j′ 6=j kj′xj′ . Note
that given the large number of knots used here, the latent
process will most likely need to be updated using the single
site updating corresponding to the second line above. The
resulting posterior mean for z(s, t) is shown for selected times
in Figure 40. For an alternative formulation of a space-time
model for this data see Stroud et al.(1999).

5.2 A spatial convolution of a temporally evolv-

ing latent process

Rather than rely on the kernel kst(ω, τ) to induce the tempo-
ral dependence in z(s, t), an appealing alternative is to put
the temporal dependence in the latent process x(s, t). The
space-time field z(s, t) can then be obtained by a purely spa-
tial convolution at time t. This is depicted in Figure 41. The
advantage here is that the convolution is purely spatial, which
can lead to substantial computational savings. Such an ap-
proach is typically only practical when observations come in
at regular times.

Here the space-time process z(s, t) is defined on the do-
main S × T where T = 1, 2, . . . , mt. The discrete latent pro-
cess x(ω, t) is defined at space-time knot locations {ω1, . . . , ωms}×
{1, . . . , mt}, where mt ·ms = m. Finally, a spatial smoothing
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Figure 40: Posterior mean estimate of the temperature sur-
face z(s, t) at six different times.
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latent process x(s,t) kernel k(s) space-time field z(s,t)
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Figure 41: A convolution based space-time model. Here a
space time-model z(s, t) (right) is constructed by defining a
latent process x(s, t) that is evolving over time (left) and
convolving it with a purely spatial kernel k(s) (middle).

kernel k(s) is defined to smooth out the latent process sepa-
rately for each time. More generally, a family of smoothing
kernels kst(ω) may be defined that vary with each space-time
point (s, t). The space-time process is then constructed as
defined below.

z(s, t) =

ms
∑

j=1

k(ωj − s)x(ωj , t)

If a kernel that varies with space and time is used, the above
construction generalizes to

z(s, t) =

ms
∑

j=1

kst(ωj)xjt

where xjt is shorthand for x(ωj , t). In the upcoming ozone
example, a single, circular, bivariate Gaussian kernel is used
for k(s).

The spatial dependence is incorporated into the prior dis-
tribution for the latent process x(ω, t). Arguably, the sim-
plest extension to the independence model is to define a lo-
cally linear GMRF prior for each xj = (xj1, . . . , xjmt)

T . Thus

π(xj |λx) ∝ λ
mt
2 exp

{

−
1

2
λxxT

j Wxj

}
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where

Wij =















−1 if |i − j| = 1
1 if i = j = 1 or i = j = mt

2 if 1 < i = j < mt

0 otherwise.

So for the entire latent process

x = (x11, x21 . . . , xms1, x12, . . . , xms2, . . . , x1mt , . . . , xmsmt)
T

the prior density becomes

π(x|λx) ∝ λ
mtms

2 exp

{

−
1

2
λxxT (W ⊗ Ims)x

}

.

This formulation is applied to a sequence of 60 days worth
of ozone measurements – 5 of which are shown in Figure 42.
Here the data y = (y1, . . . , yn)T consist of ns = 510 readings

0
20

60
10

0

Figure 42: Ozone concentrations taken for 5 consecutive sum-
mer days over the eastern US. This is a subset of the 60 days
of measurements used in the example.

taken daily at spatial locations s1, . . . , sns , for mt = 60 con-
secutive days so that n = 510 ·60. For a single day t, the like-
lihood for the ns-vector of observations yt = (y1t, . . . , ynt)

T
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is

L(yt|xt, λy) ∝ λ
n
2

y exp

{

−
1

2
λy(yt − Ktxt)

T (y − Ktxt)

}

where Kt
ij = k(ωj − si). For the entire set of n observations

y = (yT
1 , . . . , yT

nt
)T , the likelihood is

L(y|x, λy) ∝ λ
n
2

y exp

{

−
1

2
λy(y − Kx)T (y − Kx)

}

where K = diag(K1, . . . , Knt).
The prior for x is determined by the ms = 27 knot loca-

tions and spatial smoothing kernel used in the coarse model
formulation shown in the top left plot of Figure 31. For
the duration of mt = 60 days, the total number of knots
is m = ms · mt = 27 · 60. So the full prior specification can
be written

π(x|λx) ∝ λ
m
2

x exp

{

−
1

2
λxxT Wx

}

π(λx) ∝ λax−1
x exp{−bxλx}

π(λy) ∝ λ
ay−1
y exp{−byλy}.

where ax = ay = 1 and bx = by = .001. This results in the
posterior density

π(x, λx, λy|y) ∝ λ
ay+n

2
−1

y exp
{

−λy[by + .5(y − Kx)T (y − Kx)]
}

×

λ
ax+m

2

x exp
{

−λx[bx + .5xT Wx]
}

.

The full conditionals densities are

π(x| · · · ) ∝ exp{−
1

2
[λyx

T KT Kx − 2λyx
T KT y + λxxT Wx]}

π(λx| · · · ) ∝ λ
ax+m

2
−1

x exp
{

−λx[bx + .5xT Wx]
}

π(λy| · · · ) ∝ λ
ay+n

2
−1

y exp
{

−λy[by + .5(y − Kx)T (y − Kx)]
}

.
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All of which have standard forms so that the Gibbs sampler
implementation cycles through the draws

x| · · · ∼ N((λyK
T K + λxW )−1λyK

T y, (λyK
T K + λxW )−1)

or

xjt| · · · ∼ N

(

λyr
T
tjktj + nj x̄∂j

λykT
tjktj + njλx

,
1

λykT
tjktj + njλx

)

λx| · · · ∼ Γ(ax +
m

2
, bx + .5xT x)

λy| · · · ∼ Γ(ay +
n

2
, by + .5(y − Kx)T (y − Kx))

where ktj is jth column of Kt, rtj = yt −
∑

j′ 6=j ktj′xtj′ , nj =
number of neighbors of xjt, and x̄∂jt is the mean of neighbors
of xjt. The full conditionals are for both the multivariate and
single site updates of x. For large problems the multivariate
update of x is not feasible, while the univariate update of each
xjt will be simple regardless of how large m is. The posterior
mean estimate for the space-time field z(s, t), t = 1, . . . , 5,
is shown in Figure 43. Note that this particular formulation
is amenable to the dynamic linear model framework of West
and Harrison (1997) which can also ease the computational
burden of exploring the posterior. Here the observation and
evolution equations are

yt = Ktxt + ǫt, xt = xt−1 + εt

where ǫt and εt are spatially and temporally uncorrelated.
Updating x given the precisions can be carried out efficiently
via forward filtering backward simulation.

6 Combining simulations and experimen-

tal observations

It is common that computer codes based on mathematical de-
scriptions of the physical process over space and time exist to
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Figure 43: Posterior mean field for ozone concentration for
the 5 days shown in Figure 42.

simulate the system of interest. Such simulations can account
for rich space-time dependence without the need to cook up
a stochastic description of the covariance in such a process.
In this section we’ll consider a very simple space-time system
from Lorenz (1996). Given data generated from this model,
we’ll estimate the field at unobserved space-time locations
using three different approaches: a Gaussian process model
estimated from simulation output; a Bayesian inverse mod-
eling approach; and a MRF model motivated by the partial
differential equation (PDE) system itself.

Estimated fields derived from simulations of actual phys-
ical processes typically contain uncertainties due to:

• observation noise;

• uncertain initial/boundary conditions;

• uncertain coefficients/parameters in the mathematical
description; and

• inadequate mathematical representation of the physical
system being modeled.
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Hence, given observations of this process, there will neces-
sarily be uncertainty regarding what this process is at unob-
served space-time locations.

6.1 The L96 model

We consider a deterministic, nonlinear system from Lorenz
(1996) which is a continuous time model defined over discrete,
periodic spatial locations s ∈ {1, 2, . . . , 40}

∂

∂t
z(s, t) = [z(s + 1, t) − z(s − 2, t)]z(s − 1, t) − z(s, t) + F.

Given z(s, t = 0), the system can be propagated forward via
Euler integration:

z(s, t+dt) = z(s, t)+dt{[z(s+1, t)−z(s−2, t)]z(s−1, t)−z(s, t)+F}

–of course, more sophisticated integration schemes will give
more efficient simulations. To ensure stability of the simula-
tion, we use time increments of dt = .001. The forcing term
F is set to 8. Figure 44 shows realizations from this model
given an initial field z(s, t = 0) at nt = 51 regularly spaced
time increments of ∆t = .02, starting at t = 0 and ending at
t = 1.
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Figure 44: Output from the L96 model given an initial field
z(s, 0) at regularly spaced time increments t = 0, .02, . . . , 1.
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We generate a “true” realization z(s, t) by starting with
an initial field z(s, 0) at time t = 0 and propagating it until
t = 1 is reached. We restrict ourselves to the space-time set
S ×T = {1, 2, . . . , 40}× {0, .02, . . . , 1} so that the true value
z(s, t) can be thought of as a ns × nt = 40× 51 image shown
in Figure 45. From this ground truth, we obtain n = 79 noisy
measurements

ydi
= z(sdi

, tdi
) + ǫdi

, i = 1, . . . , n

where the measurement error ǫ ∼ N(0, 1
4In). The measure-

ment locations (sdi
, tdi

) are also shown in Figure 45. We’ll
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Figure 45: The true field z(s, t) generated from the L96 model
(left) and the noisy data (right) from which we will estimate
z(s, t). The observation errors are independent N(0, 1

4) ran-
dom deviates.

assume that we have a good estimate of the error precision.
Hence we’ll either treat λy as known (λy = 4), or we’ll use
an informative Γ(4, 1) prior for λy which has mean 4.

If we take z to be the nsnt-vector containing the entire
field, we can define T to be a n× nsnt incidence matrix that
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assigns observation sites di to lattice locations j. Thus the
likelihood can be written

L(y|z) ∝ λ
n
2

y exp{− 1

2
λy(y − Tz)T (y − Tz)}.

6.2 A Gaussian process model

We can use simulations from the L96 model to obtain esti-
mates of the mean and covariance of z(s, t) over the ns × nt

lattice. This is easily accomplished by taking a long simula-
tion and “cutting” it into pieces of size ns×nt. Each of these
pieces can be thought of as draws z1, z2, . . . , zM from a prior
model for z(s, t).

We can then use these realizations to build a GP prior for
z(s, t) over a ns × nt lattice over space and time

z ∼ N(µz, Σz).

The mean is set to the sample mean of the draws

µz =
1

M

M
∑

j=1

zj .

Here µz is sufficiently close to 0 that we set it to 0. Then the
nsnt × nsnt covariance matrix is set to

Σz =
1

M

M
∑

j=1

(zj − µz)(zj − µz)
T .

Hence we have exactly the setup we had before in the soft
conditioning case of Section 2.

L(y|z) ∝ λ
n
2

y exp{−
1

2
λy(y − Tz)T (y − Tz)}

π(z) ∝ |Σz|
− 1

2 exp{−
1

2
zT Σ−1

z z}
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Therefore we know the posterior distribution for z has the
form

z|y ∼ N(Λ−1λyT
T y, Λ−1)

where Λ = (λyT
T T + Σ−1

z ).
The posterior mean field is shown in Figure 46. Also

shown is the residual field (true value of z - posterior mean).
The root mean square (RMS) error of the residuals is 3.03.
Figure 47 shows the fitted values against the true field. Also
shown in this Figure are the pointwise 80% credible intervals
for the initial field z0 = (z(1, 0), z(2, 0), . . . , z(ns, 0))T . This
initial field is of interest because it is the uncertain initial
condition that determines the rest of the space-time field.
The next approach focuses on estimating this initial condition
z0.
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Figure 46: Left: Posterior mean for z(s, t) estimated under
the Gaussian process formulation. Right: The residual field
obtained by subtracting the posterior mean estimate from the
true field shown in Figure 45. The circles denote locations
where measurements were obtained.
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Figure 47: Left: True z(s, t) plotted against the poste-
rior mean from the Gaussian process formulation. Right:
Pointwise 80% credible intervals for the initial condition
z0 = (z(1, 0), z(2, 0), . . . , z(ns, 0))T . The circles denote the
true values for z0.

6.3 Bayesian inverse formulation

The previous GP formulation only uses the simulator to esti-
mate the mean and covariance of the GP model. Presumably,
the simulation model can be much more informative about
what fields are plausible given the observed data. An ap-
proach that makes much stronger use of the simulator is the
Bayesian inverse formulation. This comes at a price – a huge
number of simulation runs will be required.

The initial state for the space-time field z(s, t) is given
by the ns-vector z0 = (z(1, 0), . . . , z(40, 0))T = z(s, t = 0).
Given z0, the remaining field z is determined by the L96
model

z = η(z0)

where the simulator output z is defined over the ns × nt =
40× 51 lattice. Hence the likelihood – which requires an L96
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simulation to evaluate – is

L(y|z0, λy) ∝ λ
n
2

y exp

{

−
1

2
λy(y − Tη(z0))

T (y − Tη(z0))

}

.

A locally linear GMRF prior is specified for z0:

π(z0|λ0) ∝ λ
ns
2

0 exp

{

− 1

2
λ0

ns
∑

i=1

(z0i − z0i+1)
2

}

.

Note the sum goes to ns here since the spatial sites are as-
sumed to be periodic. In the sum ns+1 taken to be 1, making
sites 1 and ns neighbors. The prior specification is completed
by specifying priors for the precision parameters:

π(λy) ∝ λ
ay−1
y exp {−byλy} , ay = 4; by = 1,

π(λ0) ∝ λa0−1
0 exp {−b0λ0} , a0 = 1; b0 = .001.

This results in the posterior distribution:

π(z0, λy, λ0|y) ∝ L(y|η(z0), λy) × π(z0|λ0) × π(λy) × π(λ0)

∝ λ
n
2

y exp

{

−
1

2
λy(y − Tη(z0))

T (y − Tη(z0))

}

×

λ
ns
2

0 exp

{

−
1

2
λ0

ns−1
∑

i=1

(z0i − z0i+1)
2

}

×

λ
ay−1
y exp {−byλy} × λa0−1

0 exp {−b0λ0} .

The resulting full conditionals are then

π(z0i| · · · ) ∝ exp

{

−
1

2
λy(y − Tη(z0))

T (y − Tη(z0))

}

×

exp







−
1

2
λ0

∑

j∈∂i

(z0i − z0j)
2







λy| · · · ∼ Γ(ay + n/2, by + .5(y − Tη(z0))
T (y − Tη(z0)))

λ0| · · · ∼ Γ

(

a0 + ns/2, b0 + .5

ns
∑

i=1

(z0i − z0i+1)
2

)

.
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Note that evaluating π(z0i| · · · ) involves running the L96 sim-
ulator. Also this full conditional will require a Metropolis
update in the MCMC, while the precisions can be updated
via Gibbs.

As with the previous GP formulation we consider some
posterior output. The posterior mean field is shown in Figure
48. Also shown is the residual field (true value of z - posterior
mean). The RMS error here is 0.69, which is much smaller
than what was obtained under the GP formulation. This is
due to stronger linkage to the simulator model. This strong
linkage is problematic if the simulator does not adequately
model reality, in which case the GP formulation may be ad-
vantageous, even without computing considerations. Figure
49 shows the fitted values against the true field. Also shown
in this figure are the pointwise 80% credible intervals for the
initial field z0 = (z(1, 0), z(2, 0), . . . , z(ns, 0))T . Again, these
intervals are narrower as compared to those of the GP for-
mulation and they are much closer to the true z0.

6.4 PDE-based MRF formulation

The inverse specification is ideal if the simulator adequately
matches the actual physical system being observed and if it
runs quickly enough so that MCMC is possible. When this
isn’t the case, one is forced to replace the simulator with
some sort of fast model. This necessarily will introduce addi-
tional uncertainty regarding our estimate of the true under-
lying field z. Here we replace the deterministic L96 simulator
with MRF model whose full conditionals are constructed to
match the steps in the L96 simulator model. Hence the PDE
equation is replaced with a cruder, stochastic PDE (SPDE).
This SPDE-based MRF model is easy to work with com-
putationally and readily incorporates information from the
observed data. The price payed here is that it is an approxi-
mation to the actual L96 system.
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Figure 48: Left: Posterior mean for z(s, t) estimated under
the inverse formulation. Right: The residual field obtained
by subtracting the posterior mean estimate from the true
field shown in Figure 45. The circles denote locations where
measurements were obtained.

For the PDE-based MRF model for the ns × nt field
z, it is convenient to define zt to be the ns-vector zt =
(z(1, t), . . . , z(ns, t))

T , for t = 0, ∆t, . . . , 1. We can now model
z as a Markov process

π(z|λ0, λz) = π(z0|λ0) ×

nt−1
∏

t=1

π(zt+∆t|zt).

The locally linear GMRF model previously used for z0 is also
used here.

π(z0|λ0) ∝ λ
ns
2

0 exp

{

− 1

2
λ0

ns
∑

s=1

(zs0 − zs+1 0)
2

}

.

For zt+∆t|zt, the new field zt+∆t is equal to the old field zt

plus a deterministic increment µt+∆t, plus some white noise

zt+∆t|zt = µt+∆t + δ
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Figure 49: Left: True z(s, t) plotted against the poste-
rior mean from the inverse formulation. Right: Point-
wise 80% credible intervals for the initial condition z0 =
(z(1, 0), z(2, 0), . . . , z(ns, 0))T . The circles denote the true
values for z0.

where µt+∆t is a ns-vector obtained from the L96 step and δ ∼
N(0, 1

λz
Ins). Specifically, µt+∆t = (µ1 t+∆t, . . . , µ40 t+∆t)

T

where

µs t+∆t = zst + ∆t{[zs+1 t − zs−2 t]zs−1 t − zs t + F}.

Thus π(zt+∆t|zt) is given by

π(zt+∆t|zt, λz) ∝ λ
ns
2

z exp
{

− 1

2
λz(zt+∆t − µt+∆t)

T (zt+∆t − µt+∆t)
}

.

The full conditional density for zst can be determined by
restricting attention to terms in π(z|λ0, λz) that include the
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term zst. Hence

π(zst|z∂st, λ0, λz) ∝

exp







−
1

2
λ0

∑

j∈∂0s

(zs0 − zj0)
2







I[t=0]

×

exp

{

−
1

2
λz(zst − µst)

2

}I[t>0]

×

exp







−
1

2
λy

∑

j∈∂∗s

(zj t+∆t − µj t+∆t)
2







I[t<1]

where ∂0s denotes the neighborhood of s for the locally linear
prior for z0, and ∂∗s denotes the neighborhood of s for the
MRF scheme to incorporate the PDE structure. Note that
evaluating π(zst|z∂st, λ0, λz) is a simple, local calculation –
but nonlinear. For 0 < t < 1, the dependence structure for
zst is shown in Figure 50.
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Figure 50: Dependence graph for zst, a single component of
the PDE-based MRF process z. zst, shown by the central,
dark circle, is influenced by zt−∆t at the four sites connected
to zst. Likewise, the four colored sites at time t + ∆t are
affected by zst.

Now, the PDE-based MRF formulation can be summa-
rized as follows.
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Likelihood/sampling model:

L(y|z) ∝ λ
n
2

y exp{−
1

2
λy(y − Tz)T (y − Tz)}.

SPDE prior for z:

π(z|λ0, λz) ∝ λ
p

2

0 exp

{

−
1

2
λ0

p
∑

s=1

(zs0 − zs+1 0)
2

}

×

∏

t>0

λ
p

2

z exp

{

−
1

2
λz(zt − µt)

T (zt − µt)

}

.

Priors for precision parameters:

π(λy) ∝ λ
ay−1
y exp {−byλy} , ay = 4; by = 1

π(λ0) ∝ λa0−1
0 exp {−b0λ0} , a0 = 1; b0 = .001

π(λz) ∝ λaz−1
z exp {−bzλz} , az = 1; bz = .001

The full conditionals from this formulation are then

π(zst| · · · ) ∝ exp

{

−
1

2
λy(yst − zst)

2

}I[obs at (s,t)]

×

exp







−
1

2
λ0

∑

j∈∂0s

(zs0 − zj0)
2







I[t=0]

×

exp

{

−
1

2
λz(zst − µst)

2

}I[t>0]

×

exp







−
1

2
λy

∑

j∈∂∗s

(zj t+∆t − µj t+∆t)
2







I[t<1]

λy| · · · ∼ Γ(ay + n/2, by + .5(y − Tz)T (y − Tz))

λ0| · · · ∼ Γ

(

a0 + p/2, b0 + .5

p
∑

i=1

(z0i − z0i+1)
2

)

λz| · · · ∼ Γ

(

az + 50p/2, bz + .5
∑

t>0

(zt − µt)
T (zt − µt)

)

.

78



The MCMC implementation uses Metropolis updates for zst

and Gibbs updates for the precision parameters.
Again, posterior output is shown in Figures 51 and 52.

Generally, the posterior reconstruction is much better than
that of the GP formulation and only slightly worse than that
of the inverse formulation. This performance is quite remark-
able given no evaluations of the L96 simulator were carried
out here.
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Figure 51: Left: Posterior mean for z(s, t) estimated under
the PDE-based MRF formulation. Right: The residual field
obtained by subtracting the posterior mean estimate from the
true field shown in Figure 45. The circles denote locations
where measurements were obtained.

This PDE-based MRF formulation originated in geophys-
ical applications (Wikle et al., 2001; Berliner, 2003). The
MRF constructed here is essentially a very coarse version of
the L96 PDE system. The prior MRF by itself would not be
stable if it were propagated forward since the time step is far
too large. However the observed data is enough to ensure a
stable reconstruction. This PDE-based MRF prior is effec-
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Figure 52: Left: True z(s, t) plotted against the poste-
rior mean from the PDE-based MRF formulation. Right:
Pointwise 80% credible intervals for the initial condition
z0 = (z(1, 0), z(2, 0), . . . , z(ns, 0))T . The circles denote the
true values for z0.

tively a crude simulator for which MCMC can be carried out.
For other approaches that utilize crude simulation models see
Kennedy and O’Hagan (2000), Craig et al.(2001), or Higdon
et al.(2003). A Kalman filtering approach for the L96 system
is given in Bengtsson et al.(2003).

7 Discussion

This chapter introduced some basic approaches for construct-
ing space-time models. There was a deliberate attempt here
to keep the models simple so that basic modeling ideas would
be a bit more clear.

One theme in the chapter has been the flexibility of Gaus-
sian formulations. They are well developed and understood
processes that offer a number of computational advantages.
Even for modeling non-Gaussian processes, Gaussian systems
can still serve as useful components for the eventual model.
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Another facet of space-time modeling is the need to con-
sider the details of the application at hand when developing a
model formulation. Features that may require special consid-
eration include large datasets, special dependence structure,
availability of a simulation model, speed of the simulation
model, and the amount of accuracy required.
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Besag, J., York, J. and Mollié, A. (1991). Bayesian image restora-
tion, with two applications in spatial statistics (with dis-
cussion), Annals of the Institute of Statistical Mathematics
43: 1–59.

Chilés, J.-P. and Delfiner, P. (1999). Geostatistics: Modeling Spa-
tial Uncertainty, Wiley, New York.

Cleveland, W. S. (1979). Robust locally weighted regression and
smoothing scatterplots, Journal of the American Statistical
Association 74: 829–836.

Craig, P. S., Goldstein, M., Rougier, J. C. and Seheult, A. H.
(2001). Bayesian forecasting using large computer models,
Journal of the American Statistical Association 96: 717–
729.

Cressie, N. A. C. (1991). Statistics for Spatial Data, Wiley-
Interscience.

De Oliveira, V. (2000). Bayesian prediction of clipped Gaussian
random fields, Computational Statistics & Data Analysis
34(3): 299–314.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart,
G. W. (1978). LAPACK Users Guide, SIAM Publications,
Philadelphia.

Hastie, T., Tibshirani, R. and Friedman, J. H. (2001). The Ele-
ments of Statistical Learning: Data Mining, Inference, and
Prediction, Springer, New York.

Higdon, D. (1998). A process-convolution approach to modeling
temperatures in the north Atlantic Ocean, Journal of En-
vironmental and Ecological Statistics 5: 173–190.

Higdon, D. (2002). Space and space-time modeling using process
convolutions, in C. Anderson, V. Barnett, P. C. Chatwin

82



and A. H. El-Shaarawi (eds), Quantitative Methods for
Current Environmental Issues, Springer Verlag, London,
pp. 37–56.

Higdon, D. M., Lee, H. and Holloman, C. (2003). Markov chain
Monte Carlo-based approaches for inference in computa-
tionally intensive inverse problems, in J. M. Bernardo,
M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman,
A. F. M. Smith and M. West (eds), Bayesian Statistics 7.
Proceedings of the Seventh Valencia International Meeting,
Oxford University Press, pp. 181–197.

Kennedy, M. and O’Hagan, A. (2000). Predicting the output from
a complex computer code when fast approximations are
available, Biometrika 87: 1–13.

Lee, H. H. K., Higdon, D., Calder, K. and Holloman, C. (2005).
Efficient models for correlated data via convolutions of in-
trinsic processes, Statistical Modelling 5: 53–74.

Lorenz, E. N. (1996). Predictability, a problem partially solved,
Proceedings of the Seminar on Predictability, Vol. 1, Euro-
pean Center for Medium-range Weather Forecasts, Read-
ing, Berkshire, pp. 1–18.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and
Teller, E. (1953). Equations of state calculations by
fast computing machines, Journal of Chemical Physics
21: 1087–1091.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling,
W. T. (2002). Numerical Recipes in C++, The Art of Sci-
entific Computing, Second Edition, Cambridge University
Press, New York.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields:
Theory and Applications, Vol. 104 of Monographs on Statis-
tics and Applied Probability, Chapman & Hall, London.

83



Rue, H. and Tjelmeland, H. (2002). Fitting Gaussian Markov ran-
dom fields to Gaussian random fields, Scandinavian Jour-
nal of Statistics 29: 31–49.

Ryti, R. T. (1993). Superfund soil cleanup: developing the Pi-
azza Road remedial design, Journal of the Air and Waste
Management Association 24: 381–391.

Stein, M. (1999). Interpolation of Spatial Data: Some Theory for
Kriging, Springer-Verlag, New York.
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